

First Year Electrical (old)
Electromagnetic Fields (1)
Time: THREE Hours

امتحان تخلفات يونيو ٢٠١١

نصريه محالات لهرجمة

الامتحان من جزاين: من فضلك أجب كل جزء من الامتحان في اتجاه مختلف من ورقة الإجابة

Answer the following questions

Dept. of Electrical Engineering

First Question (Total 20 marks)

Answer only TWO of the following questions

- 1-a) A two plate capacitor, has an angle between the plates equal to $\pi/4$. The potential of one plate is V_0 , while the other plate is earthed (V = 0). Calculate:
 - i) the electric potential and the electric field intensity, everywhere inside the capacitor.
 - ii) the capacitance per unit length, and
 - iii) the energy stored per unit length.
- 1-b) A rectangular coordinate system is divided into two regions. Region 1 has y<0 band is occupied by a dielectric having relative permittivity $\varepsilon_{r1}=2$ whereas region 2 has y>0 and is occupied by a dielectric having relative permittivity $\varepsilon_{r2}=9$. If the electric field in region 1 at y=0 is given by $E=2a_x+3a_y-4a_z$. Determine E and D in region 2 at the interface
- 1-c) A coaxial power cable, having a core radius of r_I, is filled with two concentric layers of dielectric ε_I, ε₂ with radius r₂ and r₃ (r₃ is the outer radius of the cable). If the inner conductor have a surface charge density ρ_s C/m² and the outer conductor have a surface charge density ρ_s C/m².
 Calculate the electric flux density D, the electric field intensity E, and the electric potential V, everywhere.
- 1-d) A charge density of ρ_s C/m² is uniformly spread over the area of a disk of radius a. Evaluate the electric potential function at any point placed a distance from the center of the disk and on a line that is perpendicular to the disk.

Second Question (Total 18 marks)

- 2-a) State Gauss' Law, and express it in a mathematical form
- 2-b) <u>Prove</u> Poisson's Equation for a homogeneous region. <u>State</u> the uniqueness theorem for solving the equation
- 2-c) **State**: a) the divergence theorem b) the Stokes' theorem. **Express** both theorems in mathematical form.

Third Question (Total 18 marks)

- 3-a) Verify the divergence theorem for a vector field given by: $A = 4xy a_x + 2a_y + z^2y a_z$ over a cube with sides of unit area and its bottom corner lies on the origin (0,0,0).
- 3-b) Consider the vector field $F = a_x + z y^2 a_y$. Verify the Stokes' theorem for this vector field and the flat surface in the y-z plane bounded by [0,0,0], [0,1,0], [0,1,1], and [0,0,1].
- 3-c) A volume charge distribution is contained in a region defined in cylindrical coordinates as 0 < z < 2 m, 0 < r < 1 m and $45^{\circ} < \phi < 90^{\circ}$. Determine the total charge contained in the region.

Best Wishes

Prof. Dr. Magdi El-Saadawi