

لالمتحان من جز/ين: من فضلك /جب كل جزء من الامتحان فى /تجاه مختثف من ورقةّ الوجابة

Answer the following questions

First Question (Total 20 marks)

Answer only TWO of the following questions

1-a) A two plate capacitor, has an angle between the plates equal to $\pi / 4$. The potential of one plate is \mathbf{V}_{O}, while the other plate is earthed $(\mathrm{V}=0)$. Calculate:
i) the electric potential and the electric field intensity. everywhere inside the canateiter.
ii) the capacitance per unit length, and
iii) the energy stored per unit length.

1-b) A rectangular coordinate system is divided into two regions. Region 1 has $\mathbf{y}<0$ band is occupied by a dielectric having relative permittivity $\varepsilon_{r r}=2$ whereas region 2 has $\mathrm{y}>0$) and is occupied by a dielectric having relative permittivity $\varepsilon_{r 2}=9$. If the electric field in region 1 at $\mathbf{y}=\mathbf{0}$ is given by $\boldsymbol{E}=2 \boldsymbol{a}_{x}+3 \boldsymbol{a}_{y}-\mathbf{4} \boldsymbol{a}_{z}$. Determine \mathbf{E} and \mathbf{D} in region 2 at the interface
1-c) A coaxial power cable, having a core radius of \boldsymbol{r}_{1}, is filled with two concentric layers of dielectric $\varepsilon_{1}, \varepsilon_{2}$ with radius r_{2} and r_{3} (r_{3} is the outer radius of the cable). If the inner conductor have a surface charge density $\rho_{s} \mathrm{C} / \mathrm{m}^{2}$ and the outer conductor have a surface charge density - $\rho_{s} \mathrm{C} / \mathrm{m}^{2}$.
Calculate the electric flux density \mathbf{D}, the electric field intensity \mathbf{E}, and the electric potential V , everywhere.
1-d) A charge density of $\rho_{S} \mathrm{C} / \mathrm{m}^{2}$ is uniformly spread over the area of a disk of radius a. Evaluate the electric potential function at any point placed a distance from the center of the disk and on a line that is perpendicular to the disk.

Second Question (Total 18 marks)

